skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Yilin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Earth-abundant, cost-effective electrode materials are essential for sustainable rechargeable batteries and global decarbonization. Manganese dioxide (MnO2) and hard carbon both exhibit high structural and chemical tunability, making them excellent electrode candidates for batteries. Herein, we elucidate the impact of electrolytes on the cycling performance of commercial electrolytic manganese dioxide in Li chemistry. We leverage synchrotron X-ray analysis to discern the chemical state and local structural characteristics of Mn during cycling, as well as to quantify the Mn deposition on the counter electrode. By using an ether-based electrolyte instead of conventional carbonate electrolytes, we circumvent the formation of a surface Mn(II)-layer and Mn dissolution from LixMnO2. Consequently, we achieved an impressive ∼100% capacity retention for MnO2after 300 cycles at C/3. To create a lithium metal-lean full cell, we introduce hard carbon as the anode which is compatible with ether-based electrolytes. Commercial hard carbon delivers a specific capacity of ∼230 mAh g−1at 0.1 A g−1without plateau, indicating a surface-adsorption mechanism. The resulting manganese dioxide||hard carbon full cell exhibits stable cycling and high Coulombic efficiency. Our research provides a promising solution to develop cost-effective, scalable, and safe energy storage solutions using widely available manganese oxide and hard carbon materials. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. Abstract There is a need for rapid, sensitive, specific, and low‐cost virus sensors. Recent work has demonstrated that organic electrochemical transistors (OECTs) can detect the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) spike protein. Here, a simple and low‐cost approach to the fabrication of OECT devices with excellent stability and unprecedented sensitivity and specificity for the detection of SARS‐CoV‐2 virus is demonstrated. The devices rely on the engineered protein minibinder LCB1, which binds strongly to SARS‐CoV‐2. The resulting devices exhibit excellent sensitivity for the detection of SARS‐CoV‐2 virus and SARS‐CoV‐2 spike protein receptor binding domain (RBD). These results demonstrate a simple, effective, and low‐cost biomolecular sensor applicable to the real‐time detection of SARS‐CoV‐2 virus and a general strategy for OECT device design that can be applied for the detection of other pathogenic viruses. 
    more » « less
  5. An alkyl-substituted indacenodithiophene-based donor–acceptor π-conjugated polymer ( PIDTBPD ) with low stiffness and high ductility is reported. The polymer was synthesized after DFT calculations predicted that it would have a kinked backbone conformation while showing strong intramolecular charge transfer (ICT), suggestive of the fact that it would be beneficial to the polymer's elasticity and charge mobility. Atom-efficient direct arylation polymerization (DArP) was exploited to synthesize the polymer. Mechanical studies indicate that PIDTBPD has relatively rapid stress-relaxation properties, which lead to a low elastic modulus of 200 MPa and high crack-onset strain of ca . 40% (lower limit). A moderate charge carrier mobility of 2 × 10 −3 cm 2 V −1 s −1 with a current on/off ratio of 2.5 × 10 6 was obtained from the fabricated OFETs. Further experiments were performed to elucidate the structural aspects of this polymer: UV-Vis and PL spectra suggest that minimal conformational change occurs in the polymer between its diluted solution and thin film states; DSC measurements indicate that the polymer's T g is below −20 °C, allowing it to be in a rubbery state at room temperature; and XRD studies support this observation suggesting that the polymer is mostly amorphous at room temperature. 
    more » « less
  6. ABSTRACT The use of luminescent solar concentrators (LSCs) offers an alternative approach to integrating photovoltaic technologies into the built environment. The research on LSCs has bloomed in the past decade in terms of searching for novel device architectures, developing new luminescent species, and employing unique host materials. This article will provide a concise review on LSCs and focus on the polymer host materials used in LSCs. Finally, we provide a brief outlook on the future development of this research area, particularly on the polymers used as host materials and luminescent species for LSCs. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019,57, 201–215 
    more » « less